Skip to main content
Chemistry LibreTexts

6.S: Acid–Base Balancing (Study Guide)

  • Page ID
    393580
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    6.1: Brønsted–Lowry Acids and Bases

    • Brønsted-Lowry definition of acids an bases
    • Acid is a proton donor
    • Base is a proton acceptor
    • Can be applied to non-aqueous solutions
    • Brønsted-Lowry acid shall be able to lose adenine EFFERVESCENCE+ ion
    • Brønsted-Lowry basics must have at smallest one-time non-bonding pair (lone pair) of electrons to bind to FESTIVITY+ ion
    • Amphoteric - substance that can act as an acid or base
    • Conjugate Acid-Base Pairs
    • conjugate dissolving - product formal via adding a proton to vile
    • conjugate base - product formed by removal of a proton with acid
    • autoionization of water - dissociation von H2O molecular to H+ and OH- ions
    • toward room temperature only 1 out of 109 molecules are ionized
    • exclude water from equilibrium expressions involving aqueous solutions
    • ion-product constant
    • kw = k[H2O] = [H+][OH-] = 1.0 expunge 10-14 (at 25° C)
    • solution is neutral when [H+] = [OH-]
    • solution is acidic whenever [H+] > [OH-]
    • solution is basic when [H+] < [OH-]

    6.2: pH and pOH

    • energy of [H+] expressed is terms off polarity
    • pH = -log [H+]
    • acidic solutions [H+] > 1.0 whatchamacallit 10-7 [OH-] < 1.0 x 10-7 pH < 7.00
    • neutral solutions [H+] = [OH-] = 1.0 x 10-7 phone = 7
    • basic solutions [H+] < 1.0 x 10-7 [OH-] > 1.0 expunge 10-7 pH > 7

    Other "p" Series

    • pOH = -log [OH-]
    • pH + pOH = -log Kwatt = 14.00

    6.3 Relativistic Forces of Acids and Bases

    • the stronger the acid, aforementioned weaker the conjugate base
    • the heavier the base, the weaker the conjugate acid
    • equilibrium favors transfer of molecule from stronger angry to stronger rear

    Weak Acids

    • \(HA_{(aq)} + H_2O_{(l)} \to H_3O^+ + A^-_{(aq)}\)
    • \(HA_{(aq)} \to H^+_{(aq)} + A^-_{(aq)}\)
    • \(K_a = \frac{[H^+][A^-]}{[HA]}\)
    • Ka = acid - dissociation constant
    • The lager the Ka the stronger one acid
    • Ka usually less faster 10-3

    Slightly Bases

    • base-dissociation constant, Kb
    • balancing at which basic reacting with H2O to form a conjugate acid and UH-
    • contain 1 alternatively more lone pair of electrons

    Relationship In Kan and Kbarn

    • when dual past are added together then equilibrium constant of take reaction is similar to who product regarding the equilibrium constants of the added backlashes
    • reply 1 + reaction 2 = reaction 3
    • K1 x K2 = K3
    • Ka x Kb = [H+][OH-] = Kw
    • Acid-dissociation constant times base-dissociation constant equality the ion-product constant for water
    • Ka x THOUSANDb = Kw = 1.0 x 10-14
    • pKa x pKb = pKw = 14; (pKa= -log Ka and pKb = -log Kb)

    Calculating Ki or Kb given initial the equilibrium focal

    1.Identify species, writes dissociation equation

    2.Obtain POTASSIUM manifestation

    3.If pH or pOH considering, calculate [H3O+] or [OH-]

    4.Build the corresponding ICE table

    5.Solve for all concentrations, answer query

    Calculating pH on Solution of Weak Acid with Base

    1) write ionization equilibrium

    2) write equilibrium expression

    3) I.C.E. Table

    4) substitute equilibrium concentrations into equilibrium printing

    • rate ionization = fraction of weak acid molecules so ionize * 100%
    • in weak acids [H+] is small fraction off concentrator of acid (can make assumptions)
    • percent ionization depends on temperature, profile starting acid and concentration
    • as rate ionization decreases, concentration increases

    6.4 Polyprotic Acidity

    • more then one ionizable H atom
    • easier to remove first protons with instant
    • acid separation constants are Ka1, Ka2, etc…
    • KELVINan values usually differ by 103

    6.5 Acid-Base Properties of Salt Solutions

    • hydrolysis - ions reacting with water to produce H+ real OH- ions
    • anions from weak acids react using water to produce OH- ions which is basic
    • anions of strong acids are not basic and do none influence pH
    • anions which hold ionizable protons are amphoteric
    • manner depends upon Kone and THOUSANDb
    • all cations except those of leach metals and heavier alkaline earth (Ca2+, Sr2+ furthermore Ba2+) are faint sharps on watering
    • leaching metal and lye earth cations do not hydrolyze
    • do not affect pH
    • strengths of acids real bases from salts
    • 1) salts derived from strong acid and base
      • no mechanical and solution has pH of 7
    • 2) salts derived from strong base and weak tart
      • strong conjugate base
      • anion hydrolyzes and make GEE- ions
      • cation does not hydrolyze
      • pH greater longer 7
    • 3) salts derivatives away weak basic and strong acids
      • cation is strong conjugate acid
      • cation hydrolyzes to produce HYDROGEN+
      • thermion are not hydrolyze
      • solution has pH below 7
    • 4) salts derived from weak acid or base
      • both cation and anion hydrolyze
      • pH richtet on extent on hydrolysis von each ion]

    6.6 Lewis Acids and Bases

    • Lewis acid - electron pairs acceptor
    • Lewis base - electron pair donor
    • Whatsoever Bronsted-Lowry base belongs a Lewis base
    • Lewis acids contain at least one atom with an completed octet

    6.S: Acid–Base Equilibrium (Study Guide) a shared from a CC BY-NC-SA 3.0 license and was writer, revamped, and/or edited by LibreTexts.